Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417811

RESUMO

Thiazolidinediones (TZD) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that may reduce hepatic steatosis through their effects in adipose tissue and therefore have been assessed as potential therapies to treat nonalcoholic fatty liver disease (NAFLD) in humans. However, some studies suggest that expression and activation of hepatocyte PPARγ promotes steatosis and that would limit the benefits of TZD as a NAFLD therapy. To further explore this possibility, we examined the impact of short-term rosiglitazone maleate treatment after the development of moderate or severe diet-induced obesity, in both control and adult-onset hepatocyte-specific PPARγ knockout (PpargΔHep) mice. Independent of the level of obesity and hepatic PPARγ expression, the TZD treatment enhanced insulin sensitivity, associated with an increase in white adipose tissue (WAT) fat accumulation, consistent with clinical observations. However, TZD treatment increased hepatic triglyceride content only in control mice with severe obesity. Under these conditions, PpargΔHep reduced diet-induced steatosis and prevented the steatogenic effects of short-term TZD treatment. In these mice, subcutaneous WAT was enlarged and associated with increased levels of adiponectin, while hepatic levels of phosphorylated adenosine 5'-monophosphate-activated protein kinase were also increased. In addition, in mice with severe obesity, the expression of hepatic Cd36, Cidea, Cidec, Fabp4, Fasn, and Scd-1 was increased by TZD in a PPARγ-dependent manner. Taken together, these results demonstrate that hepatocyte PPARγ expression offsets the antisteatogenic actions of TZD in mice with severe obesity. Therefore, in obese and insulin resistant humans, TZD-mediated activation of hepatocyte PPARγ may limit the therapeutic potential of TZD to treat NAFLD.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Obesidade/genética , PPAR gama/genética , Rosiglitazona/farmacologia , Animais , Dieta Hiperlipídica , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , PPAR gama/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(34): 14460-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667185

RESUMO

Maturity-onset diabetes of the young (MODY) is a subtype of diabetes defined by an autosomal pattern of inheritance and a young age at onset, often before age 25. MODY is genetically heterogeneous, with 8 distinct MODY genes identified to date and more believed to exist. We resequenced 732 kb of genomic sequence at 8p23 in 6 MODY families unlinked to known MODY genes that showed evidence of linkage at that location. Of the 410 sequence differences that we identified, 5 had a frequency <1% in the general population and segregated with diabetes in 3 of the families, including the 2 showing the strongest support for linkage at this location. The 5 mutations were all placed within 100 kb corresponding to the BLK gene. One resulted in an Ala71Thr substitution; the other 4 were noncoding and determined decreased in vitro promoter activity in reporter gene experiments. We found that BLK--a nonreceptor tyrosine-kinase of the src family of proto-oncogenes--is expressed in beta-cells where it enhances insulin synthesis and secretion in response to glucose by up-regulating transcription factors Pdx1 and Nkx6.1. These actions are greatly attenuated by the Ala71Thr mutation. These findings point to BLK as a previously unrecognized modulator of beta-cell function, the deficit of which may lead to the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Mutação , Quinases da Família src/genética , Adolescente , Adulto , Animais , Western Blotting , Linhagem Celular Tumoral , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Saúde da Família , Feminino , Predisposição Genética para Doença , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Linhagem , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...